Problem:
active(nats()) -> mark(adx(zeros()))
active(zeros()) -> mark(cons(0(),zeros()))
active(incr(cons(X,Y))) -> mark(cons(s(X),incr(Y)))
active(adx(cons(X,Y))) -> mark(incr(cons(X,adx(Y))))
active(hd(cons(X,Y))) -> mark(X)
active(tl(cons(X,Y))) -> mark(Y)
active(adx(X)) -> adx(active(X))
active(incr(X)) -> incr(active(X))
active(hd(X)) -> hd(active(X))
active(tl(X)) -> tl(active(X))
adx(mark(X)) -> mark(adx(X))
incr(mark(X)) -> mark(incr(X))
hd(mark(X)) -> mark(hd(X))
tl(mark(X)) -> mark(tl(X))
proper(nats()) -> ok(nats())
proper(adx(X)) -> adx(proper(X))
proper(zeros()) -> ok(zeros())
proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
proper(0()) -> ok(0())
proper(incr(X)) -> incr(proper(X))
proper(s(X)) -> s(proper(X))
proper(hd(X)) -> hd(proper(X))
proper(tl(X)) -> tl(proper(X))
adx(ok(X)) -> ok(adx(X))
cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
incr(ok(X)) -> ok(incr(X))
s(ok(X)) -> ok(s(X))
hd(ok(X)) -> ok(hd(X))
tl(ok(X)) -> ok(tl(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Proof:
Bounds Processor:
bound: 10
enrichment: match
automaton:
final states: {14,13,12,11,10,9,8,7,6}
transitions:
ok9(204) -> 181*
ok9(206) -> 177*
03() -> 60*
top10(207) -> 14*
zeros3() -> 57*
active10(206) -> 207*
ok4(74) -> 82*
ok4(73) -> 81*
ok4(63) -> 50*
cons4(60,57) -> 63*
cons4(82,81) -> 69*
cons4(74,73) -> 75*
adx4(65) -> 72*
adx4(62) -> 50*
adx4(57) -> 63*
active4(41) -> 62*
active4(63) -> 68*
top4(68) -> 14*
mark3(65) -> 62*
mark4(75) -> 69*
mark4(72) -> 50*
adx5(75) -> 79*
adx5(69) -> 68*
active5(100) -> 86*
active5(57) -> 69*
proper4(60) -> 82*
proper4(72) -> 68*
proper4(57) -> 81*
04() -> 74*
zeros4() -> 73*
proper5(65) -> 69*
proper5(79) -> 86*
proper5(74) -> 92*
proper5(73) -> 91*
active0(5) -> 6*
active0(2) -> 6*
active0(4) -> 6*
active0(1) -> 6*
active0(3) -> 6*
mark5(79) -> 68*
nats0() -> 1*
top5(86) -> 14*
mark0(5) -> 2*
mark0(2) -> 2*
mark0(4) -> 2*
mark0(1) -> 2*
mark0(3) -> 2*
adx6(87) -> 86*
adx6(96) -> 142*
adx6(93) -> 100*
adx6(73) -> 103*
adx0(5) -> 7*
adx0(2) -> 7*
adx0(4) -> 7*
adx0(1) -> 7*
adx0(3) -> 7*
proper6(105) -> 112*
proper6(75) -> 87*
zeros0() -> 3*
ok5(97) -> 124,92
ok5(96) -> 129,91
ok5(93) -> 69*
cons0(3,1) -> 12*
cons0(3,3) -> 12*
cons0(3,5) -> 12*
cons0(4,2) -> 12*
cons0(4,4) -> 12*
cons0(5,1) -> 12*
cons0(5,3) -> 12*
cons0(5,5) -> 12*
cons0(1,2) -> 12*
cons0(1,4) -> 12*
cons0(2,1) -> 12*
cons0(2,3) -> 12*
cons0(2,5) -> 12*
cons0(3,2) -> 12*
cons0(3,4) -> 12*
cons0(4,1) -> 12*
cons0(4,3) -> 12*
cons0(4,5) -> 12*
cons0(5,2) -> 12*
cons0(5,4) -> 12*
cons0(1,1) -> 12*
cons0(1,3) -> 12*
cons0(1,5) -> 12*
cons0(2,2) -> 12*
cons0(2,4) -> 12*
cons5(74,73) -> 93*
cons5(92,91) -> 87*
00() -> 4*
ok6(100) -> 68*
ok6(142) -> 123*
ok6(139) -> 134*
ok6(146) -> 122*
ok6(101) -> 87*
ok6(143) -> 180,138
incr0(5) -> 8*
incr0(2) -> 8*
incr0(4) -> 8*
incr0(1) -> 8*
incr0(3) -> 8*
05() -> 97*
s0(5) -> 13*
s0(2) -> 13*
s0(4) -> 13*
s0(1) -> 13*
s0(3) -> 13*
zeros5() -> 96*
hd0(5) -> 9*
hd0(2) -> 9*
hd0(4) -> 9*
hd0(1) -> 9*
hd0(3) -> 9*
cons6(74,103) -> 104*
cons6(97,96) -> 101*
cons6(97,142) -> 146*
tl0(5) -> 10*
tl0(2) -> 10*
tl0(4) -> 10*
tl0(1) -> 10*
tl0(3) -> 10*
ok7(150) -> 112*
ok7(147) -> 175,133
ok7(109) -> 86*
ok7(186) -> 174*
ok7(151) -> 131*
ok7(193) -> 189*
ok7(195) -> 192*
proper0(5) -> 11*
proper0(2) -> 11*
proper0(4) -> 11*
proper0(1) -> 11*
proper0(3) -> 11*
adx7(129) -> 123*
adx7(119) -> 112*
adx7(101) -> 109*
adx7(96) -> 116*
adx7(143) -> 147*
adx7(180) -> 175*
ok0(5) -> 5*
ok0(2) -> 5*
ok0(4) -> 5*
ok0(1) -> 5*
ok0(3) -> 5*
active6(109) -> 112*
active6(93) -> 87*
top0(5) -> 14*
top0(2) -> 14*
top0(4) -> 14*
top0(1) -> 14*
top0(3) -> 14*
mark6(105) -> 86*
top1(36) -> 14*
incr6(104) -> 105*
active1(5) -> 36*
active1(2) -> 36*
active1(4) -> 36*
active1(1) -> 36*
active1(3) -> 36*
top6(112) -> 14*
proper1(5) -> 36*
proper1(2) -> 36*
proper1(4) -> 36*
proper1(1) -> 36*
proper1(3) -> 36*
incr7(142) -> 153*
incr7(122) -> 112*
incr7(117) -> 118*
incr7(146) -> 150*
ok1(25) -> 25,9
ok1(20) -> 36,11
ok1(15) -> 36,11
ok1(29) -> 36,11
ok1(24) -> 24,8
ok1(31) -> 31,12
ok1(21) -> 21,7
ok1(33) -> 33,13
ok1(28) -> 28,10
proper7(104) -> 122*
proper7(74) -> 124*
proper7(96) -> 180*
proper7(118) -> 128*
proper7(103) -> 123*
proper7(73) -> 129*
tl1(5) -> 28*
tl1(2) -> 28*
tl1(4) -> 28*
tl1(1) -> 28*
tl1(3) -> 28*
active7(150) -> 128*
active7(101) -> 119*
hd1(5) -> 25*
hd1(2) -> 25*
hd1(4) -> 25*
hd1(1) -> 25*
hd1(3) -> 25*
mark7(155) -> 128*
mark7(118) -> 112*
s1(5) -> 33*
s1(2) -> 33*
s1(4) -> 33*
s1(1) -> 33*
s1(3) -> 33*
cons7(124,123) -> 122*
cons7(139,147) -> 151*
cons7(154,153) -> 155*
cons7(97,116) -> 117*
incr1(5) -> 24*
incr1(2) -> 24*
incr1(4) -> 24*
incr1(1) -> 24*
incr1(3) -> 24*
top7(128) -> 14*
cons1(3,1) -> 31*
cons1(3,3) -> 31*
cons1(3,5) -> 31*
cons1(4,2) -> 31*
cons1(4,4) -> 31*
cons1(5,1) -> 31*
cons1(5,3) -> 31*
cons1(5,5) -> 31*
cons1(20,15) -> 16*
cons1(1,2) -> 31*
cons1(1,4) -> 31*
cons1(2,1) -> 31*
cons1(2,3) -> 31*
cons1(2,5) -> 31*
cons1(3,2) -> 31*
cons1(3,4) -> 31*
cons1(4,1) -> 31*
cons1(4,3) -> 31*
cons1(4,5) -> 31*
cons1(5,2) -> 31*
cons1(5,4) -> 31*
cons1(1,1) -> 31*
cons1(1,3) -> 31*
cons1(1,5) -> 31*
cons1(2,2) -> 31*
cons1(2,4) -> 31*
incr8(147) -> 166*
incr8(151) -> 159*
incr8(131) -> 128*
incr8(175) -> 173*
adx1(15) -> 16*
adx1(5) -> 21*
adx1(2) -> 21*
adx1(4) -> 21*
adx1(1) -> 21*
adx1(3) -> 21*
proper8(155) -> 162*
proper8(142) -> 175*
proper8(117) -> 131*
proper8(97) -> 134*
proper8(154) -> 174*
proper8(116) -> 133*
proper8(96) -> 138*
proper8(153) -> 173*
proper8(143) -> 192*
01() -> 20*
cons8(186,166) -> 201*
cons8(134,133) -> 131*
cons8(174,173) -> 162*
cons8(167,166) -> 168*
zeros1() -> 15*
06() -> 139*
nats1() -> 29*
adx8(192) -> 188*
adx8(138) -> 133*
adx8(195) -> 200*
mark1(25) -> 25,9
mark1(24) -> 24,8
mark1(21) -> 21,7
mark1(16) -> 36,6
mark1(28) -> 28,10
zeros6() -> 143*
top2(38) -> 14*
ok8(197) -> 182*
ok8(159) -> 128*
ok8(201) -> 162*
ok8(166) -> 173*
ok8(200) -> 188*
active2(20) -> 38*
active2(15) -> 38*
active2(29) -> 38*
active8(159) -> 162*
active8(146) -> 131*
proper2(20) -> 47*
proper2(15) -> 46*
proper2(16) -> 38*
s7(97) -> 154*
s7(139) -> 186*
cons2(47,46) -> 38*
cons2(43,41) -> 42*
top8(162) -> 14*
adx2(46) -> 38*
adx2(41) -> 42*
incr9(169) -> 162*
incr9(188) -> 181*
incr9(200) -> 204*
mark2(42) -> 38*
active9(201) -> 177*
active9(151) -> 169*
02() -> 43*
mark8(168) -> 162*
zeros2() -> 41*
s8(139) -> 167*
s8(134) -> 174*
s8(193) -> 197*
top3(50) -> 14*
top9(177) -> 14*
proper3(42) -> 50*
proper3(41) -> 51*
proper3(43) -> 54*
proper9(167) -> 182*
proper9(147) -> 188*
proper9(139) -> 189*
proper9(166) -> 181*
proper9(168) -> 177*
ok2(41) -> 46*
ok2(43) -> 47*
cons9(197,204) -> 206*
cons9(182,181) -> 177*
ok3(60) -> 54*
ok3(55) -> 38*
ok3(57) -> 51*
s9(189) -> 182*
cons3(43,41) -> 55*
cons3(60,57) -> 65*
cons3(54,51) -> 50*
07() -> 193*
adx3(51) -> 50*
adx3(41) -> 55*
zeros7() -> 195*
active3(55) -> 50*
problem:
Qed