Problem: active(nats()) -> mark(adx(zeros())) active(zeros()) -> mark(cons(0(),zeros())) active(incr(cons(X,Y))) -> mark(cons(s(X),incr(Y))) active(adx(cons(X,Y))) -> mark(incr(cons(X,adx(Y)))) active(hd(cons(X,Y))) -> mark(X) active(tl(cons(X,Y))) -> mark(Y) active(adx(X)) -> adx(active(X)) active(incr(X)) -> incr(active(X)) active(hd(X)) -> hd(active(X)) active(tl(X)) -> tl(active(X)) adx(mark(X)) -> mark(adx(X)) incr(mark(X)) -> mark(incr(X)) hd(mark(X)) -> mark(hd(X)) tl(mark(X)) -> mark(tl(X)) proper(nats()) -> ok(nats()) proper(adx(X)) -> adx(proper(X)) proper(zeros()) -> ok(zeros()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(0()) -> ok(0()) proper(incr(X)) -> incr(proper(X)) proper(s(X)) -> s(proper(X)) proper(hd(X)) -> hd(proper(X)) proper(tl(X)) -> tl(proper(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) incr(ok(X)) -> ok(incr(X)) s(ok(X)) -> ok(s(X)) hd(ok(X)) -> ok(hd(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Proof: Bounds Processor: bound: 10 enrichment: match automaton: final states: {14,13,12,11,10,9,8,7,6} transitions: ok9(204) -> 181* ok9(206) -> 177* 03() -> 60* top10(207) -> 14* zeros3() -> 57* active10(206) -> 207* ok4(74) -> 82* ok4(73) -> 81* ok4(63) -> 50* cons4(60,57) -> 63* cons4(82,81) -> 69* cons4(74,73) -> 75* adx4(65) -> 72* adx4(62) -> 50* adx4(57) -> 63* active4(41) -> 62* active4(63) -> 68* top4(68) -> 14* mark3(65) -> 62* mark4(75) -> 69* mark4(72) -> 50* adx5(75) -> 79* adx5(69) -> 68* active5(100) -> 86* active5(57) -> 69* proper4(60) -> 82* proper4(72) -> 68* proper4(57) -> 81* 04() -> 74* zeros4() -> 73* proper5(65) -> 69* proper5(79) -> 86* proper5(74) -> 92* proper5(73) -> 91* active0(5) -> 6* active0(2) -> 6* active0(4) -> 6* active0(1) -> 6* active0(3) -> 6* mark5(79) -> 68* nats0() -> 1* top5(86) -> 14* mark0(5) -> 2* mark0(2) -> 2* mark0(4) -> 2* mark0(1) -> 2* mark0(3) -> 2* adx6(87) -> 86* adx6(96) -> 142* adx6(93) -> 100* adx6(73) -> 103* adx0(5) -> 7* adx0(2) -> 7* adx0(4) -> 7* adx0(1) -> 7* adx0(3) -> 7* proper6(105) -> 112* proper6(75) -> 87* zeros0() -> 3* ok5(97) -> 124,92 ok5(96) -> 129,91 ok5(93) -> 69* cons0(3,1) -> 12* cons0(3,3) -> 12* cons0(3,5) -> 12* cons0(4,2) -> 12* cons0(4,4) -> 12* cons0(5,1) -> 12* cons0(5,3) -> 12* cons0(5,5) -> 12* cons0(1,2) -> 12* cons0(1,4) -> 12* cons0(2,1) -> 12* cons0(2,3) -> 12* cons0(2,5) -> 12* cons0(3,2) -> 12* cons0(3,4) -> 12* cons0(4,1) -> 12* cons0(4,3) -> 12* cons0(4,5) -> 12* cons0(5,2) -> 12* cons0(5,4) -> 12* cons0(1,1) -> 12* cons0(1,3) -> 12* cons0(1,5) -> 12* cons0(2,2) -> 12* cons0(2,4) -> 12* cons5(74,73) -> 93* cons5(92,91) -> 87* 00() -> 4* ok6(100) -> 68* ok6(142) -> 123* ok6(139) -> 134* ok6(146) -> 122* ok6(101) -> 87* ok6(143) -> 180,138 incr0(5) -> 8* incr0(2) -> 8* incr0(4) -> 8* incr0(1) -> 8* incr0(3) -> 8* 05() -> 97* s0(5) -> 13* s0(2) -> 13* s0(4) -> 13* s0(1) -> 13* s0(3) -> 13* zeros5() -> 96* hd0(5) -> 9* hd0(2) -> 9* hd0(4) -> 9* hd0(1) -> 9* hd0(3) -> 9* cons6(74,103) -> 104* cons6(97,96) -> 101* cons6(97,142) -> 146* tl0(5) -> 10* tl0(2) -> 10* tl0(4) -> 10* tl0(1) -> 10* tl0(3) -> 10* ok7(150) -> 112* ok7(147) -> 175,133 ok7(109) -> 86* ok7(186) -> 174* ok7(151) -> 131* ok7(193) -> 189* ok7(195) -> 192* proper0(5) -> 11* proper0(2) -> 11* proper0(4) -> 11* proper0(1) -> 11* proper0(3) -> 11* adx7(129) -> 123* adx7(119) -> 112* adx7(101) -> 109* adx7(96) -> 116* adx7(143) -> 147* adx7(180) -> 175* ok0(5) -> 5* ok0(2) -> 5* ok0(4) -> 5* ok0(1) -> 5* ok0(3) -> 5* active6(109) -> 112* active6(93) -> 87* top0(5) -> 14* top0(2) -> 14* top0(4) -> 14* top0(1) -> 14* top0(3) -> 14* mark6(105) -> 86* top1(36) -> 14* incr6(104) -> 105* active1(5) -> 36* active1(2) -> 36* active1(4) -> 36* active1(1) -> 36* active1(3) -> 36* top6(112) -> 14* proper1(5) -> 36* proper1(2) -> 36* proper1(4) -> 36* proper1(1) -> 36* proper1(3) -> 36* incr7(142) -> 153* incr7(122) -> 112* incr7(117) -> 118* incr7(146) -> 150* ok1(25) -> 25,9 ok1(20) -> 36,11 ok1(15) -> 36,11 ok1(29) -> 36,11 ok1(24) -> 24,8 ok1(31) -> 31,12 ok1(21) -> 21,7 ok1(33) -> 33,13 ok1(28) -> 28,10 proper7(104) -> 122* proper7(74) -> 124* proper7(96) -> 180* proper7(118) -> 128* proper7(103) -> 123* proper7(73) -> 129* tl1(5) -> 28* tl1(2) -> 28* tl1(4) -> 28* tl1(1) -> 28* tl1(3) -> 28* active7(150) -> 128* active7(101) -> 119* hd1(5) -> 25* hd1(2) -> 25* hd1(4) -> 25* hd1(1) -> 25* hd1(3) -> 25* mark7(155) -> 128* mark7(118) -> 112* s1(5) -> 33* s1(2) -> 33* s1(4) -> 33* s1(1) -> 33* s1(3) -> 33* cons7(124,123) -> 122* cons7(139,147) -> 151* cons7(154,153) -> 155* cons7(97,116) -> 117* incr1(5) -> 24* incr1(2) -> 24* incr1(4) -> 24* incr1(1) -> 24* incr1(3) -> 24* top7(128) -> 14* cons1(3,1) -> 31* cons1(3,3) -> 31* cons1(3,5) -> 31* cons1(4,2) -> 31* cons1(4,4) -> 31* cons1(5,1) -> 31* cons1(5,3) -> 31* cons1(5,5) -> 31* cons1(20,15) -> 16* cons1(1,2) -> 31* cons1(1,4) -> 31* cons1(2,1) -> 31* cons1(2,3) -> 31* cons1(2,5) -> 31* cons1(3,2) -> 31* cons1(3,4) -> 31* cons1(4,1) -> 31* cons1(4,3) -> 31* cons1(4,5) -> 31* cons1(5,2) -> 31* cons1(5,4) -> 31* cons1(1,1) -> 31* cons1(1,3) -> 31* cons1(1,5) -> 31* cons1(2,2) -> 31* cons1(2,4) -> 31* incr8(147) -> 166* incr8(151) -> 159* incr8(131) -> 128* incr8(175) -> 173* adx1(15) -> 16* adx1(5) -> 21* adx1(2) -> 21* adx1(4) -> 21* adx1(1) -> 21* adx1(3) -> 21* proper8(155) -> 162* proper8(142) -> 175* proper8(117) -> 131* proper8(97) -> 134* proper8(154) -> 174* proper8(116) -> 133* proper8(96) -> 138* proper8(153) -> 173* proper8(143) -> 192* 01() -> 20* cons8(186,166) -> 201* cons8(134,133) -> 131* cons8(174,173) -> 162* cons8(167,166) -> 168* zeros1() -> 15* 06() -> 139* nats1() -> 29* adx8(192) -> 188* adx8(138) -> 133* adx8(195) -> 200* mark1(25) -> 25,9 mark1(24) -> 24,8 mark1(21) -> 21,7 mark1(16) -> 36,6 mark1(28) -> 28,10 zeros6() -> 143* top2(38) -> 14* ok8(197) -> 182* ok8(159) -> 128* ok8(201) -> 162* ok8(166) -> 173* ok8(200) -> 188* active2(20) -> 38* active2(15) -> 38* active2(29) -> 38* active8(159) -> 162* active8(146) -> 131* proper2(20) -> 47* proper2(15) -> 46* proper2(16) -> 38* s7(97) -> 154* s7(139) -> 186* cons2(47,46) -> 38* cons2(43,41) -> 42* top8(162) -> 14* adx2(46) -> 38* adx2(41) -> 42* incr9(169) -> 162* incr9(188) -> 181* incr9(200) -> 204* mark2(42) -> 38* active9(201) -> 177* active9(151) -> 169* 02() -> 43* mark8(168) -> 162* zeros2() -> 41* s8(139) -> 167* s8(134) -> 174* s8(193) -> 197* top3(50) -> 14* top9(177) -> 14* proper3(42) -> 50* proper3(41) -> 51* proper3(43) -> 54* proper9(167) -> 182* proper9(147) -> 188* proper9(139) -> 189* proper9(166) -> 181* proper9(168) -> 177* ok2(41) -> 46* ok2(43) -> 47* cons9(197,204) -> 206* cons9(182,181) -> 177* ok3(60) -> 54* ok3(55) -> 38* ok3(57) -> 51* s9(189) -> 182* cons3(43,41) -> 55* cons3(60,57) -> 65* cons3(54,51) -> 50* 07() -> 193* adx3(51) -> 50* adx3(41) -> 55* zeros7() -> 195* active3(55) -> 50* problem: Qed